418 research outputs found

    プラズモンフリー物質の電磁場増強効果 : 顕微分光とシミュレーションによる低次元構造の研究

    Get PDF
    内容の要約広島大学(Hiroshima University)博士(理学)Doctor of Sciencedoctora

    ICR News 2020

    Get PDF
    This Annual Report covers from 1 January to 31 December 202

    Collective enhancement of quantum coherence in coupled quantum dot films

    Get PDF
    協力し合えば強くなる、半導体量子ドットの集団増強効果の観測に成功 --量子センサーやエネルギー変換に新たな道--. 京都大学プレスリリース. 2021-12-21.Colloidal semiconductor quantum dots (QDs) are attractive materials that provide unique photophysics of multiple electron-hole pairs (multiexcitons) in strongly quantum confined systems. Multiexciton phenomena such as efficient Auger recombination have been intensively investigated with respect to individual QDs. However, the cooperative nature of QDs, especially in terms of multiexciton coherence, has not been elucidated thus far. Here, we report the observation of the collective enhancement of quantum coherence in coupled QD films. Using a photocurrent quantum interference technique, we find that the multiexciton quantum coherence in coupled QDs is significantly increased compared to the case of isolated QDs. This cooperative effect is induced by the coherent electronic coupling between QDs. Our results clarify the enhancement mechanism in coupled quantum systems and open the door to advanced optoelectronic applications such as coherent amplifiers and frequency upconverters

    Corticospinal excitability modulation in resting digit muscles during cyclical movement of the digits of the ipsilateral limb

    Get PDF
    We investigated how corticospinal excitability of the resting digit muscles was modulated by the digit movement in the ipsilateral limb. Subjects performed cyclical extension-flexion movements of either the right toes or fingers. To determine whether corticospinal excitability of the resting digit muscles was modulated on the basis of movement direction or action coupling between ipsilateral digits, the right forearm was maintained in either the pronated or supinated position. During the movement, the motor evoked potential (MEP) elicited by transcranial magnetic stimulation was measured from either the resting right finger extensor and flexor, or toe extensor and flexor. For both finger and toe muscles, independent of forearm position, MEP amplitude of the flexor was greater during ipsilateral digit flexion as compared to extension, and MEP amplitude of the extensor was greater during ipsilateral digit extension as compared to flexion. An exception was that MEP amplitude of the toe flexor with the supinated forearm did not differ between during finger extension and flexion. These findings suggest that digit movement modulates corticospinal excitability of the digits of the ipsilateral limb such that the same action is preferred. Our results provide evidence for a better understanding of neural interactions between ipsilateral limbs, and may thus contribute to neurorehabilitation after a stroke or incomplete spinal cord injury

    Localised surface plasmon resonance inducing cooperative Jahn–Teller effect for crystal phase-change in a nanocrystal

    Get PDF
    結晶中の電子の集団的な運動が原子を動かすプラズモン誘起原子変位を初めて発見 --見えない光学センサーなど新技術の実現に期待--. 京都大学プレスリリース. 2023-08-01.The Jahn–Teller effect, a phase transition phenomenon involving the spontaneous breakdown of symmetry in molecules and crystals, causes important physical and chemical changes that affect various fields of science. In this study, we discovered that localised surface plasmon resonance (LSPR) induced the cooperative Jahn–Teller effect in covellite CuS nanocrystals (NCs), causing metastable displacive ion movements. Electron diffraction measurements under photo illumination, ultrafast time-resolved electron diffraction analyses, and theoretical calculations of semiconductive plasmonic CuS NCs showed that metastable displacive ion movements due to the LSPR-induced cooperative Jahn–Teller effect delayed the relaxation of LSPR in the microsecond region. Furthermore, the displacive ion movements caused photo-switching of the conductivity in CuS NC films at room temperature (22 °C), such as in transparent variable resistance infrared sensors. This study pushes the limits of plasmonics from tentative control of collective oscillation to metastable crystal structure manipulation

    Modulation of Corticospinal Excitability during Acquisition of Action Sequences by Observation

    Get PDF
    Excitability of the corticospinal pathway increases during observation of an action. However, how corticospinal excitability changes during observation of sequential actions in the course of acquiring novel skills (observational learning) remains unexplored. To investigate this, we used a previously unpracticed sequence of ten hand postures. Participants were asked to repeat observation and replication of the sequence. This block of observation and replication was repeated 5 times. During observation of a given hand posture (OK sign), motor-evoked potentials (MEPs) elicited by transcranial magnetic stimulation were recorded from hand muscles. In experiment 1, the OK sign appeared in the 9th position of the sequence. Almost all participants could replicate the OK sign only at the 5th block of the experiment. MEP amplitude was greater than that in the control, and decreased with the stages. This suggested that during observational learning of sequential hand postures MEP changed with the progress of the learning. To evaluate this idea, we performed two additional experiments. In experiment 2, the OK sign appeared in the 2nd position. Almost all participants replicated the OK sign even in the 1st block. The MEP amplitude did not change across stages. In experiment 3, the OK sign appeared in the 9th position, but the order of other signs was randomized in every stage. Many participants were not able to replicate the OK sign even during the 5th block of the experiment. The MEP amplitude did not change across stages. These results suggest that: (1) During observational learning modulation of corticospinal excitability is associated with the learning process. (2) Corticospinal excitability decreases as learning progresses

    Suzaku Discovery of a Hard X-Ray Tail in the Persistent Spectra from the Magnetar 1E 1547.0-5408 during its 2009 Activity

    Full text link
    The fastest-rotating magnetar 1E 1547.0-5408 was observed in broad-band X-rays with Suzaku for 33 ks on 2009 January 28-29, 7 days after the onset of its latest bursting activity. After removing burst events, the absorption-uncorrected 2-10 keV flux of the persistent emission was measured with the XIS as 5.7e-11 ergs cm-2 s-1, which is 1-2 orders of magnitude higher than was measured in 2006 and 2007 when the source was less active. The persistent emission was also detected significantly with the HXD in >10 keV up to at least ~110 keV, with an even higher flux of 1.3e-10 ergs cm-2 s-1 in 20-100 keV. The pulsation was detected at least up to 70 keV at a period of 2.072135+/-0.00005 s, with a deeper modulation than was measured in a fainter state. The phase-averaged 0.7-114 keV spectrum was reproduced by an absorbed blackbody emission with a temperature of 0.65+/-0.02 keV, plus a hard power-law with a photon index of ~1.5. At a distance of 9 kpc, the bolometric luminosity of the blackbody and the 2-100 keV luminosity of the hard power-law are estimated as (6.2+/-1.2)e+35 ergs s-1 and 1.9e+36 ergs s-1, respectively, while the blackbody radius becomes ~5 km. Although the source had not been detected significantly in hard X-rays during the past fainter states, a comparison of the present and past spectra in energies below 10 keV suggests that the hard component is more enhanced than the soft X-ray component during the persistent activity.Comment: 12 pages, 7 figures, PASJ Vol.62 No.2 accepte
    corecore